84 research outputs found

    From Biology to Bytes: Predicting the Path of Ultrasound Waves Through the Human Body

    Get PDF

    Design of multi-frequency acoustic kinoforms

    Get PDF
    Complex diffraction limited acoustic fields can be generated from a single element transducer using inexpensive 3-D printable acoustic kinoforms. This is extremely promising for a number of applications. However, the lack of ability to vary the field limits the potential use of this technology. In this work, this limitation is circumvented using multi-frequency acoustic kinoforms for which different acoustic fields are encoded onto different driving frequencies. An optimisation approach based on random downhill binary search is introduced for the design of the multi-frequency kinoforms. This is applied to two test cases to demonstrate the technique: a kinoform designed to generate the numerals “1,” “2,” and “3” in the same plane but at different driving frequencies, and a kinoform designed to generate 3 sets of eight foci lying on a circle with a driving-frequency-dependent radius. Field measurements from these samples confirmed that multi-frequency acoustic kinoforms can be designed that switch between different arbitrary, pre-designed, acoustic field patterns in the target plane by changing the driving frequenc

    ElasticMatrix: A MATLAB toolbox for anisotropic elastic wave propagation in layered media

    Get PDF
    Simulating the propagation of elastic waves in multi-layered media has many applications. A common approach is to use matrix methods where the elastic wave-field within each material layer is represented by a sum of partial-waves along with boundary conditions imposed at each interface. While these methods are well-known, coding the required matrix formation, inversion, and analysis for general multi-layered systems is non-trivial and time-consuming. Here, a new open-source toolbox called ElasticMatrix is described which solves the problem of acoustic and elastic wave propagation in multi-layered media for isotropic and transverse-isotropic materials where the wave propagation occurs in a material plane of symmetry. The toolbox is implemented in MATLAB using an object oriented programming framework and is designed to be easy to use and extend. Methods are provided for calculating and plotting dispersion curves, displacement and stress fields, reflection and transmission coefficients, and slowness profiles

    Advanced photoacoustic image reconstruction using the k-Wave toolbox

    Get PDF
    Reconstructing images from measured time domain signals is an essential step in tomography-mode photoacoustic imaging. However, in practice, there are many complicating factors that make it difficult to obtain high-resolution images. These include incomplete or undersampled data, filtering effects, acoustic and optical attenuation, and uncertainties in the material parameters. Here, the processing and image reconstruction steps routinely used by the Photoacoustic Imaging Group at University College London are discussed. These include correction for acoustic and optical attenuation, spatial resampling, material parameter selection, image reconstruction, and log compression. The effect of each of these steps is demonstrated using a representative in vivo dataset. All of the algorithms discussed form part of the open-source k-Wave toolbox (available from http://www.k-wave.org)

    Quantifying Numerical Errors in the Simulation of Transcranial Ultrasound using Pseudospectral Methods

    Get PDF
    Effective transcranial transmission of focused ultrasound is desirable for various therapeutic applications. Time-reversal (TR) focusing based on numerical simulations of ultrasound propagation can be used to correct for the aberrating skull layer. For weakly heterogeneous media, k-space and pseudospectral time domain (PSTD) methods have been shown to have increased accuracy and efficiency compared to the finite-difference time domain (FDTD) methods typically used in TR. However, their suitability for highly heterogeneous, transcranial simulations is less clear. Here, this is established in terms of spatial and temporal sampling requirements through numerical testing and comparison with FDTD schemes. PSTD schemes are shown to give equal or better accuracy compared to FDTD schemes for modelling propagation through tissue-realistic heterogeneities, which, combined with the reduction in numerical dispersion obtained with k-space correction, recommends them for use in simulated TR

    Stackable acoustic holograms

    Get PDF
    Acoustic holograms can be used to form complex distributions of pressure in 3D at MHz frequencies from simple inexpensive ultrasound sources. The generation of such fields is vital to a diverse range of applications in physical acoustics. However, at present, the application of acoustic holograms is severely hindered by the static nature of the resulting fields. In this work, it is shown that by intentionally reducing the diffraction efficiency of each hologram, it is possible to create stackable acoustic holograms that can be repositioned to reconfigure the combined acoustic field. An experimental test-case consisting of two holograms, each designed to generate a distinct distribution of acoustic foci, is used to demonstrate the feasibility of this approach. Field scans taken for four different positions of the two holograms confirm that the individual patterns for each hologram can be arbitrary translated relative to one another. This allows for the generation of a much greater range of fields from a single transducer than could be created using a single hologram

    Binary Volume Acoustic Holograms

    Get PDF
    In recent years, high-resolution additive manufacturing has enabled a diverse range of low-cost methods for ultrasonic wave-front shaping. Acoustic holograms, in particular, allow for the generation of arbitrary diffraction-limited acoustic fields at megahertz frequencies from single-element transducers. These are phase plates that function as direct acoustic analogs to thin optical holograms. In this work, it is shown that, by using multiple polymer three-dimensional (3D) printing, two-material (binary) acoustic analogs to "thick"or volume optical holograms can also be generated. First, an analytic approach for designing a volume hologram that diffracts a set of input fields onto a desired set of output fields is briefly summarized. Next, a greedy-optimization approach based on random downhill binary search able to account for the constraints imposed by the chosen fabrication method is introduced. Finally, an experimental test case designed to diffract the field generated by a 2.54-cm planar lead zirconate titanate (PZT) transducer onto eight distinct patterns dependent on the direction of the incident field is used to validate the approach and the design method. Field scans of the eight target fields demonstrate that acoustic analogs of optical volume holograms can be generated using multipolymer printing and that these allow the multiplexing of distinct fields onto different incident field directions

    Experiments and simulations demonstrating the rapid ultrasonic rewarming of frozen tissue cryovials

    Get PDF
    The development of methods to safely rewarm large cryopreserved biological samples remains a barrier to the widespread adoption of cryopreservation. Here, experiments and simulations were performed to demonstrate that ultrasound can increase rewarming rates relative to thermal conduction alone. An ultrasonic rewarming setup based on a custom 444 kHz tubular piezoelectric transducer was designed, characterized, and tested with 2 ml cryovials filled with frozen ground beef. Rewarming rates were characterized in the -20 °C to 5 °C range. Thermal conduction-based rewarming was compared to thermal conduction plus ultrasonic rewarming, demonstrating a tenfold increase in rewarming rate when ultrasound was applied. The maximum recorded rewarming rate with ultrasound was 57° C/min, approximately 2.5 times faster than with thermal conduction alone. Coupled acoustic and thermal simulations were developed and showed good agreement with the heating rates demonstrated experimentally and were also used to demonstrate spatial heating distributions with small (<3° C) temperature differentials throughout the sample when the sample was below 0° C. The experiments and simulations demonstrate the potential for ultrasonic cryovial rewarming with a possible application to large volume rewarming, as faster rewarming rates may improve the viability of cryopreserved tissues and reduce the time needed for cells to regain normal function

    A Monitor Function for Spectral Moving Mesh Methods Applied to Nonlinear Acoustics

    Get PDF
    Spectral methods have made linear acoustics simulations highly computationally efficient, but they currently lose their efficiency when modelling nonlinear waves with regular grids. Moving mesh methods can address this by distributing mesh nodes to minimise the number of nodes needed to represent a waveform. In this paper, a monitor function is presented which is designed specifically for spectral moving mesh methods. In comparison with past monitor functions, this new monitor function significantly improves the convergence rate of the spectral moving mesh method when applied to Burgers’ equation

    Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles

    Get PDF
    Acoustic fields with multiple foci have many applications in physical acoustics ranging from particle manipulation to neural modulation. However, the generation of multiple foci at arbitrary locations in three-dimensional is challenging using conventional transducer technology. In this work, the optical generation of acoustic fields focused at multiple points using a single optical pulse is demonstrated. This is achieved using optically absorbing surface profiles designed to generate specific, user-defined, wavefields. An optimisation approach for the design of these tailored surface profiles is developed. This searches for a smoothly varying surface that will generate a high peak pressure at a set of target focal points. The designed surface profiles are then realised via a combination of additive manufacturing and absorber deposition techniques. Acoustic field measurements from a sample designed to generate the numeral “7” are used to demonstrate the design method
    corecore